# How should Chris Davis be valued?

Answer: Not sure.

I’m trying to figure out this BABIP (batting average on balls in play) puzzle. Orioles first baseman Chris Davis, who notched a BABIP south of .324 just once in his career before last year (.275 in 2010), saw said statistic drop by almost 100 points in 2014. It’s easy to point to the defensive shift as a cause — when defenses shift on you 83 percent of the time, you almost have to — but I’m reluctant to buy in on this just yet.

Unfortunately, there is not much, if any that I know of, publicly-available defensive shift data. Prior to the 2014 season, Jeff Zimmerman published 2013 data courtesy of The 2014 Bill James Almanac. A haphazard calculation yields a 2013 “shift BABIP” about 18 points, or about 6 percent, lower than the MLB aggregate BABIP of .297. During the 2014 season, an ESPN feature projected defensive shifts to reach an all-time high, and by quite a margin, too. In light of this, one could hypothesize that more overall shifts would cause a lower aggregate BABIP. However, MLB’s aggregate BABIP in 2014 was .298.

None of this really tells us a whole lot. The shift BABIP would be awesome if it could be broken down by location of the ball in play — accordingly, I would strictly focus on a pull-side shift BABIP — but, alas, it does not. FanGraphs also breaks down a hitter’s spray chart numerically — you can view Davis’ pull-side splits here —  but it does not indicate how many times defenses shifted against him when he pulled the ball. Until this gap in the data can be both a) plugged and b) made publicly available, the answers we seek regarding the true effectiveness of the shift may evade us.

No matter, because I still want to try to figure some things out. Let’s talk a little bit of theory. Like a hitter’s BABIP, I think his shift BABIP is also likely to be volatile. No matter where you place your fielders, you cannot predict where a batter will hit the ball. If you study the spray charts and play the probabilities just right, you’ll surely turn a few more would-be hits into outs. But just like regular BABIP, there will still be an element of luck involved.

Thus, when I look at this table, reproduced from Mike Podhorzer’s FanGraphs post

Season At-Bats Balls in Play Shift Count % Shifted Shift BABIP No Shift BABIP
2012 515 346 110 31.8% 0.364 0.323
2013 584 385 199 51.7% 0.302 0.431
2014 450 277 230 83.0% 0.230 0.353

… I see all sorts of luck. I think the mistake is made when one relates shift percentage with shift BABIP. I expect more shifts to correlate with greater effectiveness — results that would be reflected in the hitter’s depressed batting average. But more shifts does not equate to greater effectiveness on a per-play basis, which is essentially what shift BABIP measures. In short: given that a player’s batted ball profile is identical year to year, his shift BABIP should have some semblance of consistency. We know that BABIP is pretty volatile, but there is a small element of consistency to it (for example, Edwin Encarnacion‘s BABIP is perennially stuck in the mid-.200s while Mike Trout‘s is typically buoyed in the upper-.300s). Thus, I would expect shift BABIP to exhibit at least a little bit of consistency, and for that consistency to produce consistently lower marks than that of the regular BABIP.

Speaking of batted ball profiles, Davis’ pull-side profile was consistent between 2013 and 2014:

Season LD% GB% FB%
2012 21.9% 60.9% 17.2%
2013 30.4% 48.5% 21.0%
2014 29.9% 52.1% 18.1%

Yet Davis’ pull-side BABIP dropped from .338 to .185. The decrease makes sense intuitively, but he saw the fewest shifts in 2012 and actually had a worse pull-side BABIP than he did in 2013. I don’t have to run a regression to show there’s no correlation to be found there (albeit in a minuscule sample size). Now, his increasing tendency to pull the ball (43.3% in 2012, 46.2% in 2013, 50.9% in 2014): that is something that should correlate well with shift BABIP. Because the shift BABIP doesn’t differentiate among ball placement, where the player hits the ball ought to affect his shift BABIP, especially if he predominantly pulls the ball. Thus, an increase in balls in play to the pull side should correlate with a decrease in shift BABIP. Despite all this, Davis recorded his highest shift BABIP during the year he pulled the ball with the least amount of authority.

Now, forgive me, but I have to try to make something of all of this. Let’s take the 6-percent decrease in aggregate BABIP when accounting for shifts (from earlier), and let’s say that teams shift on Davis 100 percent of the time. (It’s not unfathomable, given defenses shifted against him five times out of six, and it appears — it appears — to have succeeded with flying colors.) Given an identical batted ball profile from year to year, maybe I could expect his BABIP, which sat at .335 and .336 the two years prior to 2014, to fall to around .315 permanently. Even if his “true” BABIP benchmark is closer to .300, then maybe his overall shift BABIP is in the .280 ballpark. As he hits more and more balls to his pull side, his shift BABIP will decrease, as will his batting average. That I can fathom.

But I cannot bring myself to accept that a 10-percent increase in pull-side balls-in-play from 2013 to 2014 correlates with a 24-percent decrease in shift BABIP. I don’t think the latter can reasonably be larger than the former without a significant luck element involved. Then again, the 7-percent increase in pull-side balls from 2012 to 2013 resulted in a 17-percent decrease in shift BABIP produces an almost identical ratio (24/10 = 2.4, 17/7 = 2.429), so maybe there’s something I’m missing. But allow me to speak hypothetically: Let’s say Davis puts 100 balls in play, consisting of 50 to his pull side and 50 everywhere else. This silly 2.4-to-1 ratio demonstrates that one more ball hit to the pull side — that is, now he hits 51 balls to the pull side and 49 everywhere else — means not only is that one extra pulled ball an automatic out but also almost one-and-a-half more balls not to the pull side become outs. It’s simply incomprehensible, and I maintain that a percentage increase in balls hit to the pull side would correlate with at most a percentage decrease in shift BABIP.

Wrapping things up: I think it goes without saying that Davis got unlucky in the BABIP department in 2014 — it’s more a matter of determining how unlucky and why. I think his shift BABIPs betray Davis; I think he got especially lucky against the shift in 2012 and especially unlucky in 2014. In general, more shifts should suppress a hitter’s batting average but not his shift BABIP, and it’s Davis’ shift and pull-side BABIPs that absolutely tanked in 2014. Considering he still managed to hit a home run in 5 percent of his plate appearances, I a full 600 from Davis to yield at least 30 bombs, and I think that’s a modest projection. Couple that with a batting average rebound — which I fully expect at this point, strikeout rate disclaimers withstanding — and the down-and-out Davis could be a nice draft day bargain.

Advertisements